Интересное
  • Виктор
  • Статьи
  • 3 мин. чтения

Поливинилпирролидон (ПВПД)

Поливинилпирролидон обладает целым комплексом интересных, а в некоторых отношениях уникальных, свойств, что позволяет использовать его в самых разнообразных областях. Однако основной областью его применения является медицина.



Поливинилпирролидон (ПВПД) имеет следующую формулу:



Применение ПВПД


Наибольшее применение ПВПД получил в медицине как заменитель плазмы крови, для дезинтоксикации организма, пролонгации действия некоторых лекарств (новокаина, пенициллина) и как связующий материал для изготовления лекарственных препаратов в виде таблеток. Лекарственные препараты на основе ПВПД выпускают в различных странах под названием перистон (Германия), макроза (США), гемовинил, гемодез (Россия). В текстильной промышленности ПВПД используется для снятия краски с плохо окрашенных тканей и как активатор для улучшения окрашиваемости синтетических волокон; в фотографии – для изготовления эмульсий; в косметике – как растворитель и загуститель.


В зависимости от величины молекулярной массы поливинилпирролидон используют:

– для выведения токсических веществ из организма (полимер с низкой молекулярной массой – ~ 10 000-15 000);

– в качестве основы плазмозаменяющих растворов (полимер со средней молекулярной массой – 25 000–40 000) при переливании крови;

– для пролонгирования действия лекарств (полимер с высокой молекулярной массой – ~ 60 000);

– в качестве энтеросорбента (в сшитой форме).


Основные зарубежные производители это – Ashland, BASF SE (Kollidon), Nippon Shokubai Co. Ltd(PVP K30, K85 K90), Boai NKY Pharmaceuticals Ltd (KoVidone) и Zhangzhou Huafu Chemical Co. Ltd, в СНГ же производством ПВПД занимается толькоООО «АК Синтвита», в ассортименте которых ПВПД марок 8000, 12600 и 35000, где цифры означают молекулярную массу.


Структура и свойства ПВПД


ПВПД – аморфный полимер белого цвета линейного строения, молекулярная масса от нескольких сотен до нескольких сотен тысяч в зависимости от условий получения.

Температура размягчения (Тразм.) составляет 140 – 160 0С, плотность при 20 0С – 1,19 г/см3 . 0

ПВПД легко растворим в воде и большинстве органических растворителей: низших алифатических дикарбоновых кислотах, кетонах, спиртах, ароматических углеводородах и др.; не растворим в эфирах, алифатических и алициклических углеводородах. Гигроскопичен, при комнатной температуре сухой может сохраняться без разложения. В результате длительного нагревания при 140 – 150 0С ПВПД окрашивается в коричневый цвет и теряет растворимость, а при 230 – 270 0С деполимеризуется. ПВПД проявляет высокую склонность к комплексообразованию, связывая многие соединения, в том числе красители, лекарственные вещества, витамины и токсины. Растворы ПВПД обладают большой абсорбционной способностью.


Прямое винилирование α-пирролидона ацетиленом


Прямое винилирование α-пирролидона ацетиленом осуществляют при 373-573 К и давлении 1,5-4 МПа. В этих условиях ацетилен способен разлагаться со взрывом:



При атмосферном давлении разложение происходит лишь при взрыве детонатора. В условиях реакции винилирования при высоком давлении энергия, необходимая для инициирования распада ацетилена, очень мала, что делает процесс взрывоопасным. В связи с этим для проведения реакции винилирования разработаны специальные технология и аппаратура. Одним из путей снижения взрывоопасности производства является разбавление ацетилена инертными газами, например азотом или парами реагирующих веществ. За рубежом процесс проводят, как правило, с применением ацетилено-азотных смесей. В России используется оригинальный метод винилирования, разработанный А.Е. Фаворским и М.Ф. Шостаковским, в котором разбавление ацетилена осуществлется парами винилируемого агента или образующегося винилового производного.


Процесс винилирования пирролидона практически состоит из пяти стадий:



Бутиндиол-1,4 синтезируют, пропуская ацетилен и 30%-ный водный раствор формальдегида через колонну, содержащую ацетиленид меди, при 373 К и 0,5-0,7 МПа. Полученный 35%-ный водный раствор бутиндиола-1,4 гидрируют под давлением 20 МПа на никелевом катализаторе. Образующийся бутандиол-1,4 дегидрируют с почти количественным выходом до Ύ-бутиролактона при 523 К в присутствии медного катализатора. Ύ-Бутиролактон нагревают с безводным аммиаком в автоклаве при 443-453 К и повышенном давлении. Винилирование α- пирролидона проводят ацетиленом, разбавленным азотом, при температуре 373-378 К и давлении 1,5 МПа в присутствии катализаторов основного характера.

В качестве катализаторов используют оксиды и гидроксиды щелочных и щелочноземельных металлов, алкоголяты, соли лактамов, имидов, амидов. В присутствии даже небольших количеств воды процесс не идет. Для винилирования α-пирролидона используют в качестве растворителя тетрагидрофуран, Nметилпирролидон, метилаль, диметоксиэтан, диоксан, диметиловый эфир тетраэтиленгликоля. В присутствии щелочного катализатора реализуется следующий ионный механизм реакции:


Реакция протекает через промежуточное образование непредельного металлорганического соединения. При последующем взаимодействии его с молекулой исходного реагента образуется винильное производное.


Косвенное винилирование α-пирролидона


Проблемы технологии прямого винилирования, связанные с применением ацетилена при повышенном давлении, побудили к поиску альтернативных путей получения α-пирролидона. В настоящее время разработаны способы косвенного винилирования α-пирролидона, т.е. введения винильной группы в результате ряда химических превращений без применения ацетилена.


В промышленности N-винилпирролидон получают дегидрогалогенированием N-(β-хлорэтил)пирролидона, пиролизом простых и сложных эфиров N-(β- гидроксиэтил)пирролидона, а также дегидратацией N-(β- гидроксиэтил)пирролидона


Дегидрогалогенирование N-(β-хлорэтил)пирролидона. Получение N-винилпирролидона этим методом можно представить следующей общей схемой:



Смесь Ύ-бутиролактона и моноэтаноламина при 453-463 К превращается в N-(β-гидроксиэтил)пирролидон с выходом 90%. Последний реагирует с тионилхлоридом при температуре, не превышающей 308 К, и из смеси выделяют N-(β-хлорэтилпирролидон). Его выход составляет 76%. Отщепление хлорида водорода от N-(β-хлорэтил)пирролидона протекает чрезвычайно легко при действии спиртовых растворов щелочей при 293-308 К. Переход от N-(β-хлорэтил)пирролидона к N-винилпирролидону можно осуществить также методом олефинового расщепления через N-(β- пирролидонил)этилтриметиламмонийиодат:



Образующуюся четвертичную соль обрабатывают оксидом серебра в растворе метилового спирта. Ее выход составляет 55%. Из смеси выделяют Nвинилпирролидон с выходом 81%.


Пиролиз простых и сложных эфиров.


N-Винилпирролидон получают также пиролизом ацетата N-(β-гидрокси-этил)пирролидона. Процесс можно описать следующей общей схемой:


 



Взаимодействие янтарной кислоты и моноэтаноламина осуществляют при 423 К, выход N-(β-гидроксиэтил)сукцинимида составляет 90-92%. Последний восстанавливают в 50%-ном растворе серной кислоты на свинцовых анодах при 274-278 К. N-(β-гидроксиэтил)пирролидон образуется с выходом выше 55%. Его ацетилируют уксусным ангидридом. Выход ацетильного производного составляет ~ 90%. Пиролизом ацетата при 733 К получают N-винилпирролидон с выходом 50%.


Дегидратация N-(β-гидроксиэтил)пирролидона. При получении N-винилпирролидона по этому методу N-(β-оксиэтил)пирролидон пропускают в парообразном состоянии при 573-673 К и пониженном давлении над активированным оксидом алюминия (93% Аl2O3, 2% Fe2O3, 5% КОН). Целевой продукт получают с выходом 80%. В большинстве методов синтеза N-винилпирролидона основным промежуточным продуктом является N-(β-гидроксиэтил)пирролидон. Помимо привеЯнтарная кислота NaI + (CH3)3N Ag2O 733 К 228 денных выше способов его можно получить также из α-пирролидона и этиленоксида:



Source: https://oaoo.ru/polimer/polivinilpirrolidon-pvpd.html

Межтекстовые Отзывы
Посмотреть все комментарии
guest

Хлоропреновые каучуки (ХПК)

Сокращения и другие названия: ХПК, CR, наириты, неопрены. Тип полимера: Эластомер Хлоропреновые каучуки – группа каучуков...

Антистатические добавки

Антистатик – вещество, которое применяется для предотвращения длительного сохранения электрических зарядов, образуемых в результате трения на поверхности предметов....

Сшивающие агенты (отверждающие добавки)

Сшивающие агенты используются в полимерных композициях для сшивания линейных макромолекул в единую трехмерную сетку на определенной стадии переработки....

Диоктилфталат (ДОФ)

Сокращения и другие названия: Бис (2-этилгексил) фталат, Ди-второктилфталат, DEHP, CAS 117-81-7 Тип полимера: полиэфиры Диоктилфталат – это...

Бутилкаучук (БК)

Сокращения: БК, полиизобутилен, Butylrubber Тип полимера: Эластомер Бутилкаучук – продукт сополимеризации изобутилена с небольшим содержанием изопрена....

Интересные факты о полимерах (5 фото)

Полимерные материалы уже стали неотъемлемой частью нашей жизни, современный мир просто не может существовать без них. Любой полимер...

Синтетический каучук

Каучук – это природный или искусственный полимер, широко используемый в промышленности. Благодаря способности к высокоэластичным деформациям в широком...

Полиэтиленоксид, ПЭОК, Полиэтиленгликоль, ПЭГ, PEG, PEO

Сокращения и другие названия: ПЭОК, полиэтиленгликоль, полиоксиэтилен, ПЭГ, ПЭО или англ. PEG, PEO. Тип полимера: Полиолефины Полиэтиленоксид...

Ацетилцеллюлоза (ацетат целлюлозы, АЦ)

Сокращения и другие названия: Ацетат целлюлозы, АЦ, Cellulose acetate Тип полимера: Эфироцеллюлозный полимер Ацетилцеллюлоза  – сложный уксуснокислый эфир...

Как приклеить ТЭП подошву к обуви?

Подошва является наиболее уязвимым элементом обуви, поскольку подвергается высоким нагрузкам. Со временем платформа может растрескаться, лопнуть или просто...

Чем пластмассы отличаются от полимеров

Многие воспринимают полимеры и пластмассу как синонимы, но это не всегда так. Между этими материалами много как общего,...

Ультразвуковая сварка металлов и полимеров

Содержание: Характеристика метода Преимущества Используемое оборудование Особенности технологии Интересное видео Ультразвук применяется везде, включая промышленную сферу. Особую значимость...

Усадка уплотнителей при отрицательных температурах

Большинство ТЭП уплотнителей изготавливаются на основе SEBS (СЕБС). Данный материал придает готовым изделиям устойчивость к высоким температурам и...

Фенолформальдегидные смолы

Сокращения: ФФС, PF, СФЖ, СФ Фенолформальдегидные смолы представляют собой жидкие или твердые олигомерные продукты поликонденсации фенола...

Трикрезилфосфат

Трикрезилфосфат – трикрезиловый эфир ортофосфорной кислоты, представляющий собой бесцветную (возможно, с желтым оттенком или желтоватую) прозрачную маслянистую густую...

Обзор производства изготовления полиуретановых форм

Полиуретановые формы нашли широкое применение в производстве искусственного камня. Они позволяют создавать уникальные изделия, которые придадут интерьеру или...

Винилпиридины

Винилпиридины – это бесцветные жидкости, хорошо растворимые в органических растворителях и плохо растворимые в воде. ...

Полифениленоксид

Сокращения: ПФО, РРО Тип полимера: ароматический полиэфир Полифениленоксид (ПФО) представляет собой аморфный термопластичный полиарилен с уникальными...

Бутадиен-нитрильные каучуки (БНК)

Сокращения: БНК, СКН, НБК, NBR Тип полимера: Эластомер Бутадиен-нитрильныекаучуки – каучуки специального назначения; продукты сополимеризации соответствующих мономеров:...

Эпихлогидрин и эпихлогидриновые каучуки (ЭХГК)

Эпихлоргидриновые каучуки (ЭХГК) – полимеры на основе эпихлоргидрина (хлорметилоксирана). Поговорим подробнее о мономере. Эпихлогидрин Эпихлоргидрин (хлорметилоксиран,...