Интересное
  • Виктор
  • Статьи
  • 2 мин. чтения

Поливинилиденхлорид (ПВДХ)

Поливинилиденхлорид (ПВДХ) – линейный кристаллизующийся полимер белого цвета.

Для технических целей используют ПВДХ молекулярной массы до 100 000. В аморфном состоянии кристаллизуется при 0 -150 ºС (оптимальный интервал температур кристаллизации 60 – 120 ºС). Степень кристалличности достигает 40 -50 %. Существует в виде двух конформаций:

1) плоский зигзаг с углом связи С-С, равным 120º, и группами ССl2 и СН2, наклоненными к основной цепи;

2) более вероятная – укороченная зигзагообразная цепь с нарушенной копланарностью (плоскости групп ССl2 перпендикулярны плоскости основной цепи).



Основные свойства ПВДХ



Поливинилиденхлорид (ПВДХ/PVDC) [-СН2-ССl2-]n линейный термопластичный полимер винилиденхлорида, ПВДХ высокой молекулярной массы растворим в три(диметиламидо)фосфате, диэтилсульфоне и тетраметилсульфоне, а при кипячении – в тетралине и ССl4; ограниченно растворяется в хлороформе, сероуглероде, дибромэтане, бензоле, горячих о-дихлорбензоле, диметилформамиде, циклогексаноне. Диоксан и тетрагидрофуран – растворители для ПВДХ низкой молекулярной массы. С уменьшением молекулярной массы прочность ПВДХ резко снижается, и одновременно повышается температура хрупкости. Химические свойства ПВДХ изучены очень мало. При нагревании выше 130 ºС ПВДХ начинает разлагаться с отщеплением хлороводорода [Еа = 33,6 ккал/моль (141 кДж/моль)]. Для идентификации 1 – 2 мг тонко измельченного полимера смешивают с 1 мл пиридина; после нагревания и последующего охлаждения раствора добавляют 0,5 мл насыщенного раствора KOH в метаноле и наблюдают появление окраски (от желтой через коричневую до черной), которая в этом случае интенсивнее, чем при идентификации поливинилхлорида. В присутствии кислорода скорость дегидрохлорирования увеличивается. При обычных температурах ПВДХ устойчив к действию кислот, щелочей, алифатических и ароматических углеводородов, спиртов, эфиров, кетонов и других. При действии органических оснований образуются окрашенные нерастворимые продукты. ПВДХ чувствителен к действию света, тепла и облучению электронами. По термическим свойствам ПВДХ близок к ПВХ; основная реакция при нагревании – дегидрохлорирование, причем скорость выделения НСl на 1 – 2 порядка больше, чем у ПВХ. При 200 ºС образуется метиленхлорид, при пиролизе (400 – 500 ºС) – тройные связи; циклизации макромолекул и их фрагментов не происходит.

Технология производства ПВДХ


Базовая технология получения поливинилиденхлорида из винилиденхлорида идентична технологии получения поливинилхлорида из винилхлорида, однако следует отдельно рассмотреть технологию получения мономера, используемого в производстве ПВДХ.

Винилиденхлорид (1,1-дихлорэтен) СН2=CCl2 – бесцветная, летучая жидкость со слабым запахом, напоминающим запах хлороформа. Основные физические свойства винилиденхлорида приведены ниже:

Винилиденхлорид хорошо растворяется в обычных органических растворителях, в воде растворяется плохо. В присутствии пероксидных инициаторов легко полимеризуется, а также вступает в реакции сополимеризации с различными мономерами. Гомополимеризацию винилиденхлорида используют для синтезаполучения поливинилиденхлорида [—СН2—СС12—]n. Широко распространены сополимеры винилиденхлорида с винилхлоридом. Сополимеризацией винилиденхлорида с акрилонитрилом получают латексы, из которых вырабатывают химически стойкие волокна. Сополимеры винилиденхлорида с бутадиеном обладают повышенной масло-и бензостойкостью, их выпускают в виде латекса и используют для производства искусственной кожи. Винилиденхлорид применяют также для производства фреонов и метилхлороформа. В промышленности винилиденхлорид получают главным образом жидкофазным дегидрохлорированием 1,1,2-трихлорэтана (продукт хлорирования винилхлорид) гидроксидом кальция Са(ОН)2 при температуре ~373 К:



В качестве побочного продукта образуется монохлорацетилен, способный к самовоспламенению. Для подавления образования монохлорацетилена применяют водный раствор щелочи, содержащей хлорид натрия. Это позволяет понизить растворимость винилиденхлорида и уменьшить возможность его вторичных превращений.



Принципиальная технологическая схема получения винилиденхлорида из винилхлорида 1 -испаритель; 2, 10 -реакторы; 3, 6, 9, 11, 13, 16 -конденсаторы; 4, 17 -сепараторы; 5 -нейтрализатор; 7, 8, 12, 14 -ректификационные колонны; 15 -насадка; 18 -кипятильник. Потоки: I -хлор; II -винилхлорид; III -щелочь; IV -тетрахлорэтаны; V -Ca(OH)2; VI -шлам; VII -отдувка; VIII -легкая фракция; IX -винилиденхлорид; X -отходы


Винилхлорид испаряется в аппарате 1 и вместе с хлором поступает в хлоратор 2, заполненный 1,1,2-трихлорэтаном. Реактор представляет собой вертикальный стальной аппарат с мешалкой и рубашкой для снятия тепла реакции с помощью испаряющегося жидкого винилхлорида. Процесс проводят при 298 К и 0,3 МПа, соотношении винилхлорид : хлор, равном 1:1,05 (моли), в присутствии в качестве катализатора хлорида железа. Газы после прохождения конденсатора 3 и сепаратора 4 отводят на очистку. Образовавшийся 1,1,2-трихлорэтан проходит нейтрализатор 5 для удаления непревращенного хлора и образовавшегося в качестве побочного продукта НСl с помощью 2%-го раствора NаОН.

Далее 1,1,2-трихлорэтан поступает на азеотропную перегонку 7, отделяется от воды в конденсаторе 6 и возвращается в колонну 7 на орошение. Избыток 1,1,2-трихлорэтана рециркулирует в нейтрализатор 5. Из осушенного продукта выделяют 1,1,2-трихлорэтан в колонне 8. Из нижней части колонны 8 удаляется остаток, состоящий из тетрахлорэтанов. Дегидрохлорирование 1,1,2-трихлорэтана осуществляют в стальном реакторе 10 раствором Са(ОН) концентрацией 160-200 г/л при 353 К. В реакторе поддерживают 50%-ный избыток щелочного агента (по сравнению со стехиометрическим). Для стабилизации винилиденхлорида в реактор постоянно подают аммиак. Смесь винилиденхлорида с парами воды и 1,1,2-трихлорэтаном охлаждается в холодильнике 11 и поступает в аппарат 17 с насадкой, в котором конденсат расслаивается на органический и водный слой. Органический слой возвращается на орошение насадки в аппарате 15, а водный направляют на ректификацию в колонны 12 и 14. В высушенный винилиденхлорид вводят в качестве ингибитора полимеризации хинон. Винилиденхлорид хранят в емкости при 263 К и 0,06 МПа. Недостатками метода является возникновение большого количества загрязненных сточных вод и образованием трудноутилизируемой соли СаС12. Более эффективно применение для дегидрохлорирования растворов едкого натра или аммиака. Газофазный процесс проводят при 773 К на хлоридах бария, меди или кальция в качестве катализатора и с добавками хлора, брома или кислорода в качестве инициатора. Мономер в качестве примеси содержит 1,2-дихлорэтан, от которого освобождаются азеотропной перегонкой с метанолом с последующей отмывкой от него водой.

Сегодня ПВДХ получают в промышленности полимеризацией винилиденхлорида по радикальному механизму при 25 – 60 ºС в эмульсии, растворе, блоке или суспензии. Наибольшее распространение получил эмульсионный метод. Инициаторами этого метода служат персульфаты или перекись водорода, эмульгаторами – лаурат калия, смесь натриевых солей алкилсерных кислот, полученных из спиртов С12 – С16 . Полимеризацию в блоке или суспензии проводят в присутствии перекиси бензоила или лаурила. Скорость процесса пропорциональна концентрации инициатора и возрастает до степени превращения 30 %, что объясняется «гель-эффектом». Полимеризацию винилиденхлорида можно также проводить в присутствии ионных инициаторов: гипохлорита натрия, солей меди и аммония (например, аммиаката серебра). Винилиденхлорид сополимеризуется с многими соединениями. Помимо двухкомпонентных сополимеров получены также трех-и четырехкомпонентные: винилиденхлорид – винилхлорид – метилакрилат; винилиденхлорид – винилхлорид – метилметакрилат; винилиденхлорид – винилхлорид – акрилонитрил, винилиденхлорид(8 %) – метилметакрилат (25 %)  стирол (41 %)  акрилонитрил (26 %) и др.

Применение ПВДХ


Из растворов ПВДХ формуют прочные, устойчивые к действию растворителей и кислот волокна (рована, США), а также пленки и жесткие конструкционные изделия. Растворы ПВДХ используют в лакокрасочной промышленности. Эмульсии (латексы) ПВДХ служат для пропитки тканей, кож, бумаги. При этом латекс вводят, например, в бумажную массу, пропитывают им бумажное полотно или наносят на поверхность бумаги (этот способ используют наиболее широко). Такая пропитка позволяет повысить прочность, гибкость, влаго-и маслостойкость бумаги, а также улучшить ее внешний вид и уменьшить растекание на ней чернил. Обработка латексом текстильных материалов способствует улучшению их эксплуатационных свойств (прочности, эластичности, износостойкости, водо-и газонепроницаемости, стойкости к действию агрессивных сред) и повышению адгезии к другим материалам. Обработка текстильных нитей или пряжи уменьшает их истирание. Ввиду затруднений, связанных с переработкой и стабилизацией, ПВДХ имеет весьма ограниченное применение. Масштабы производства не превышают нескольких тысяч тонн. Несравненно большее практическое значение приобрели сополимеры винилиденхлорида. При содержании винилиденхлорида до 70 % сополимеры имеют аморфную структуру, выше 70 % – кристаллическую. У сополимеров с содержанием винилиденхлорида выше 75 % резко падает растворимость и повышается температура размягчения. Кристаллические сополимеры винилиденхлорид малогорючи, устойчивы к действию спиртов, жиров, масел, скипидара, нефтепродуктов, СCl4 , H2SO4, HNO3 (65 %-ных), соляной и органических кислот, растворов солей щелочных, щелочноземельных и тяжелых металлов. Кристаллические сополимеры используют для производства жестких изделий и деталей, например, различной арматуры, филлер для формования вискозного волокна, медицинских инструментов, корпусов электрических батарей и аккумуляторов, тары и др., формуемых методами прессования (104 – 177 ºC, давление 3,5 – 35 МН/м2, или 35 – 350 кгс/см2) или литья под давлением (135 – 200 ºC, давление 50 – 210 МН/м2, или 500 – 2 100 кгс/см2). Методом экструзии изготовляют жесткие (непластифицированные сополимеры) и гибкие (пластифицированные сополимеры) трубы, жесткие пленки, формуют моноволокна. Также с применением различных сополимеров ВДХ изготавливают кислотощелочестойкие эмали и грунтовки, такие какэмали ЭП-711, ЭП-773, ЭП-718, ХС-720, ХС-717, ХС-710, КЧ-728, КЧ-749 лаки ЭП-730, ЭП-741, ХС-76, ХС-724 грунтовки ХС-010, ХС-059. КЧ-034 и другие.



Для изготовления пленок обычно используют сополимеры винилиденхлорида (75 – 90 %) с винилхлоридом, так как гомополимер плохо перерабатывается в пленку из-за хрупкости и низкой термостабильности. Обычно композиция для производства пленок содержит не менее 90 % сополимера. Кроме того, в ее состав входят пластификаторы, стабилизаторы и иногда красители. Сополимеры винилиденхлорида с винилхлоридом размягчаются при температурах, близких к температурам разложения, что создает большие трудности при их переработке. Введение пластификатора уменьшает вязкость расплава и позволяет его экструдировать при более низкой температуре, что гарантирует сополимер от разложения. Кроме того, пластификатор снижает хрупкость и модуль упругости пленок, а также повышает их морозостойкость. Пластификаторов, способных придавать материалу все эти свойства одновременно, не существует. Поэтому в композицию для производства поливинилиденхлоридных пленок обычно вводят два или более различных пластификаторов. В качестве стабилизаторов используют динатриевую соль этилен-диаминуксусной кислоты, эпоксидированные масла, оловосодержащие соединения, стеараты кальция, кадмия, свинца и др. Для окрашивания пленок технического назначения можно применять анилиновые и фталоцианиновые красители. Поливинилиденхлоридные пленки получают экструзией с раздувом пленочного рукава. Для получения пленок со значительной степенью кристалличности разработан специальный метод. Аморфные поливинилиденхлоридные пленки подвергаются усадке, которая начинается при 50 – 60 ºС и достигает при 80 ºС максимума (70 %). Кристаллические пленки практически не усаживаются вплоть до температуры плавления (120 ºС). Поливинилиденхлоридные пленки прочны, эластичны, малопроницаемы для паров и газов, практически не горючи, а также прозрачны для УФ-излучения и видимого света. Они устойчивы к действию кислот и щелочей (кроме NH4OH), спиртов, масел и большинства органических растворителей (при комнатной температуре). С повышением температуры растворимость пленок в органических растворителях растет. Промышленность выпускает также двухслойные (с целлофаном или алюминиевой фольгой) и трехслойные (с полиэтиленом и полиэтилентерефталатом) пленочные материалы, в которые входит ПВДХ-пленка. Сополимер винилиденхлорид с винилхлоридом экструдируют на целлофан или алюминиевую фольгу через плоскощелевую головку, плотно прикатывают роликами и немедленно охлаждают. Трехслойную пленку производят экструзией через трехщелевую головку и используют (например, на основе тройного сополимера винилиденхлорид – винилхлорид – акрилат) для получения высокоэластичных пленок и волокон (см. Поливинилхлоридные волокна). Такие пленки хорошо свариваются при помощи токов высокой частоты и ультразвука, печатание на них текстов и рисунков не вызывает затруднений. Применяют ПВДХ-пленки главным образом в пищевой промышленности для упаковки мясных, хлебобулочных и кондитерских изделий. Многослойные пленочные материалы на основе ПВДХ применяют также для вакуумной упаковки пищевых продуктов сублимационной сушки, фармацевтических препаратов, микробиологических сред и др. Поливинилиденхлоридные пленки на основе сополимера винилиденхлорид с винилхлоридом выпускаются за рубежом под следующими фирменными названиями: саран, крайовак S (США), вестан (Германия), курехалон (Япония) и др.


Source: https://oaoo.ru/polimer/polivinilidenhlorid-pvdh.html

Межтекстовые Отзывы
Посмотреть все комментарии
guest

Синтетический каучук

Каучук – это природный или искусственный полимер, широко используемый в промышленности. Благодаря способности к высокоэластичным деформациям в широком...

Хлоропрен

Хлоропрен (хлорбутадиен, 2-хлор-1,3-бутадиен), СН2=ССl-СН=СН2 – бесцветная жидкость, которая являетсяосновным сырьем для получения хлоропреновых каучуков. Его полимер известен под...

Что лучше резина или термопластичная резина

До недавнего времени резина была наиболее востребованным материалом в производстве обувных подошв. Сегодня материал стремительно проигрывает конкуренцию ТЭПам....

Полибутилентерефталат (ПБТ)

Полибутилентерефталат (ПБТ) принадлежит к семейству термопластичных полиэфиров. ПБТ представляет собой полукристаллический полимер, используемый главным образом в производстве изделий различного технического назначения...

Силоксановые каучуки (СКТ)

Силоксановые (полисилоксановые, силиконовые, кремнийорганические) каучуки представляют собой полимеры, содержащие в главной цели атомы кремния, соединенные с водородом, азотом,...

МЧС: в Подмосковье на площади 8 тыс. “квадратов” горит цех по выпуску полимеров

МОСКВА, 11 янв — ПРАЙМ. Кровля цеха по производству полимерной продукции горит на 8 тысячах квадратных метров в поселке Обухово Московской области, предварительно,...

Применение полимеров в строительстве

Благодаря превосходным эксплуатационным свойствам полимеры в строительстве получили широкое применение. Среди всех сырьевых материалов одним из самых распространенных...

Вулканизация каучука

Вулканизация каучука – это высокотехнологичная процедура, при которой исходное сырье взаимодействует с определенным реагентом. В процессе ее проведения...

Ингибиторы

Полимерным материалам свойственно изменение при воздействии на них всевозможными агрессивными, абразивными и прочими средами, а также воздействию электрического...

Пентапласт

Сокращения и другие названия: пентон, поли-3,3-бис(хлорметил)оксациклобутан Тип полимера: Термопласт, простой полиэфир Пентапласт – высокомолекулярный простой полиэфир с содержанием связанного...

Чем пластмассы отличаются от полимеров

Многие воспринимают полимеры и пластмассу как синонимы, но это не всегда так. Между этими материалами много как общего,...

Политетрафторэтилен (ПТФЭ, фторопласт-4)

Сокращения и другие названия: ПТФЭ, фторопласт-4, PTFE, тефлон. Тип полимера: Фторопласты Политетрафторэтилен – полимер тетрафторэтилена (ПТФЭ, все...

“Сибур”: Переработка полимеров в России за 5 лет может вырасти на 1,6 млн тонн

МОСКВА, 9 янв — ПРАЙМ. Потенциал роста переработки полимеров в ближайшие пять лет в России составляет 1,6 миллиона тонн, самая большая...

Химические антиоксиданты (антиокислители)

Антиоксиданты – вещества, вводимые в полимерную композицию с целью предотвратить ее «старение». Антиоксиданты относятся к большой группе полимерных...

Интересные факты о полимерах (5 фото)

Полимерные материалы уже стали неотъемлемой частью нашей жизни, современный мир просто не может существовать без них. Любой полимер...

Что такое полимеры

Полимерами называют сложные вещества, которые состоят из множества одинаковых или разных по строению звеньев, соединенных в длинные макромолекулы...

Светостабилизаторы

Светостабилизаторы это стабилизирующие добавки, которые защищают полимеры от разрушения под действием солнечного света. Так как при этом усиливаются...

Триметилолпропан

Триметилолпропан (Этриол, ТМП) – это органическое соединение, химическая формула которого C6H14O3. Он является бесцветным кристаллическим порошком с низкой...

Диоктилфталат (ДОФ)

Сокращения и другие названия: Бис (2-этилгексил) фталат, Ди-второктилфталат, DEHP, CAS 117-81-7 Тип полимера: полиэфиры Диоктилфталат – это...

Поливинилацетат

Сокращения: ПВА, PVAC Тип полимера: Термопласты Химическая формула: (C4H6O2)n Поливинилацетат – аморфный термопласт, получаемый в результате...